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Abstract—The paper describes a very fast and flexible algo-
rithm for the wideband modeling of arbitrarily shaped H-plane
wavegnide components. The algorithm is based on the evaluation
of the poles and the residues of the Y-parameters by the “bound-
ary integral—resamant mode expansion method.” It also permits
the fast evaluatioml of the effect of a deformation on the frequency
response, a feature very useful either for optimization or for
setting the mechanical tolerances. Some examples demonstrate
the efficiency, flexibility, and reliability of the method. They show
that the frequency response of complicated structures, such as
multicavity filters, can be calculated in times of the order of one
minute (or less) am ordinary workstations,

I. INTRODUCTION

THE ever-increasing interest in numerical modeling of
waveguide components is demonstrated by the huge

number of articles and conference papers devoted to this
subject in recent years. Some very efficient methods are based
on the segment~ation of the structure to be analyzed into

building blocks represented by generalized circuit matrices

or by multimode equivalent circuits [1]–[12]. Anyway, the
nature of the analytical/numerical techniques used to model
the building blocks (e.g., the mode matching technique) limits
the applicability of these methods to structures that can be
segmented into elements of very simple shapes. Another
approach is based on the field-theoretical analysis of the whole
component by general methods, such as the FEM [13], the
BEM [14], the IFDTD method [15] and the BCMM method
[16]. In this approach any limitation on the shape of analyzable
components is removed radically, but the resulting algorithms

are normally less efficient than the specialized ones, based on
the segmentation.

In recent years we developed a field-theoretical method
that conjugates the rapidity of specialized methods with the
flexibility of general ones. This method is particularly well
suited for wideband calculations of irregular responses, due
to its nice feature of yielding in a single step the mathe-
matical model c~f a waveguide component in the form of a
pole expansion in the frequency domain, In fact, after the
model has been identified, the frequency response can be
obtained straightforwardly throughout the band of interest, thus
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avoiding the repeated field calculations that, in other methods,
are carried out at many frequency (or time) points. Another
relevant feature of our method is the possibility of evaluating
very simply the perturbations of the frequency response due
to small deformations of the component. This possibility is
useful for optimization or for setting machining tolerances.

The method is founded on two cornerstones: i) an ap-
proximate—but very accurate—wideband representation of

the Y-parameters in the form of a rapidly converging pole
expansion; ii) a fast, flexible and reliable algorithm for the

calculation of the poles and the residues. This calculation
requires the determination of a number of modes of a cavity
resonator, i.e., the solution of an electromagnetic eigenvalue
problem. The approach to the solution of this problem is based
on the same philosophy originally introduced in [17] for the
calculation of the modes of hollow conducting waveguides
and, more recently, followed in [18], [19] to solve other

electromagnetic eigenvalue problems. It is characterized by the
use of a hybrid field representation consisting of quasi-static

boundary integrals and a rapidly converging resonant mode
expansion. For this reason this approach has been recently
named “boundary integral-resonant mode expansion (BI-
RME) method” [19].

A preliminary paper concerning H-plane structures appeared
on a journal of limited circulation [20]. Subsequently, the
method has been extended to E-plane and three-dimensional

(3-D) structures and, in conjunction with an optimization
algorithm, it has been used for the design of components of
industrial interest. Short descriptions of these extensions and

applications are scattered in a number of conference papers
[21]-[27]. Though the details of the theoretical aspects of
the method have not yet been described in the literature, the
algorithm has already been implemented in a very efficient
computer code for the analysis of H- and E-plane waveguide
components [28], The present paper is the first of a series
of articles we intend to publish to give a comprehensive
description of the BI-RME methodology in the analysis of
waveguide components. It is restricted to the H-plane case,
which is the simplest one.

II. WIDEBAND REPRESENTATION OF THE Y-MATRIX

Let us consider an arbitrary H-plane component of height
h (Fig. 1). The component is lossless and contains a homoge-
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neous, isotropic, nondispersive medium whose permittivities
aref, p. We have IV terminal waveguides, whose widths (a,,)

and lengths (dn ) satisfy

The component is excited by TE1o-mode incident waves,
at a frequency w small enough for assuming that, in all
waveguides, the evanescent higher order modes generated at
the discontimnities are strongly attenuated in the distances dn.
On account of (1) this assumption is acceptable if w does not
exceed some frequency ti~aX, about 1070 below the cutoff

frequency of the TE20 mode in the largest waveguide. Up to
the frequency w~., the component can be described by the
admittance matrix Y = Y(U), that relates the TEIO -mode
currents and voltages at the ports S1, Sz, . . . . SN.

From the theory of cavity resonators we know that the

elements of Y can be represented by the formula [29]

(2)

where m,n=l ,2,..., IV, q is the characteristic impedance
of the medium, k = ti ~ is the wavenumber at the frequency
w and fi, is the resonating wavenumber of the zth mode of the
cavity obtained short-circuiting the ports: furthermore, Am.
represents a series depending on the irrational eigenfunctions

of the cavity and the coefficients cn~ are given by

where fl, is the magnetic vector of the ith resonant mode of
the cavity and ;. is the magnetic vector of the TEIO mode of
the nth waveguide. Both R, and in are normalized to 1 in
the cavity volume and in the cross-section Sn,, respectively.

Equation (2) is of little practical utility due to the slow
convergence of both the modal series and the series represented

by Am.. However, we can transform this equation into a more
useful one by the following procedure. We have

On the other hand, at low frequencies all waveguides are far
below cutoff, so that, provided they are sufficiently long, the
ports are practically decoupled and the input admittances are
nearly equal to the characteristic admittances Y. of the TEIO
mode. Then we can also write

. 1 - +; [;+ O(kz)]6,..
jlwj an

where h,n, is the Kronecker symbol. Comparing with (2) we
realize that

A
7r6mn

mn %—
an

Fig. 1

Then,

A H-plane multlport waveguide component

extracting the last series from the series in (2) we

(5)

obtain

Ymn(w) %
7r6mn
—+

jkanhmn 3 Cm,j,C*i+$x , 2 (6)
jk~a~ 27rq K; (K, _~2)’

2

This equation is much more convenient than (2) due to the
improved convergence of the series (caused by the multiplica-
tion of its elements by the factor K~ 2) and because it does not
require the knowledge of the irrational eigenfunctions involved
in the calculation of Amn.

The systematic error introduced by the approximation (5)
decreases with increasing the lengths d%. To have an idea of

its magnitude we considered a waveguide section of length 2d
and width a, a case where the exact expressions of the resonant

wavenumbers KL and of the coefficients Cnt can be easily
determined. Considering a very large number of resonant
modes (in order to exclude errors due to the truncation of
the series), we calculated the admittance parameters by (6) in
the useful band of the waveguide and deduced the return loss,
that should be theoretically infinite. We verified an exponential
increase. from 32 dB (in the case d = a) to 100 dB for
d = 2.5a. Therefore, under condition (1), the accuracy of (6)
is appropriate for most practical purposes.

Using (6) the wideband modeling of a H-plane component
is reduced to the problem of determining the first few resonant
modes of a cylindrical cavity. The only Cn, coefficients that
differ from zero are those related to the ; -independent TM-
to-z resonant modes. These modes depend on a ‘2-D scalar
potential ~ defined in the cross-section S (Figs, 1 and 2) and
satisfying the eigenvalue equation

72~i-K2~=0 inS

@= O on dS. (7)

Assuming the normalization ~S +2 dS = 1, the normalized

magnetic field for the ith resonant mode is

<, =
ii. x v+,

6,&

where ~Z is the ith eigenfunction of (7) and K, is the corre-
sponding eigenvalue. Using the well-known expression of ~n,
(3) yields

where (. is a coordinate taken over the nth port and d/On.
denotes the normal derivative at the same port.
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Fig.2. Thecross-section of theshofi-circuited structure of Fig. 1 embedded
in the rectangular domain $2.

The determinant ion of a sufficient number of eigenvalues of

(7) and of the normal derivatives of the corresponding eigen-
functions is all we need to obtain the admittance parameters
in the form (6).

III. DETEIRMINATIONOF THE EIGENSOLUTIONS

The crucial point for setting up an efficient procedure for the
determination of the unknown quantities involved in (6) is the
choice of the method for finding-with no restriction on the
shape of S—a sufficient number of eigensolutions of (7) (in
most practical cases this number is of the order of many tens
and, sometimes, it can exceed one hundred). General methods,
such as the FEM [30], [31] and the BEM [32] are not adequate
for finding so large a number of eigensolutions. In fact the use

of the FEM would result in a very large matrix eigenvalue
problem, and the use of the BEM would require a huge
number of repeated calculations of the system matrix, to find
the eigenvalues as zeros of its determinant. Therefore, in our
application, both methods would result in very long computing
times and, in the case of the BEM, in the probable missing
of some eigensolutions, especially in regions of closely spaced
eigenvalues. The same disadvantages are present in a variant of
the BEM proposed in [33], where the usual free-space Green’s
function is replaced by the Green’s function of a fictitious
rectangular resoniitor O that includes the domain S (Fig. 2).

Also in our method we consider S as a subdomain of 0.
We extend to 0 the domain of ~ and assume

V2$+K2$=0 infl-n (9)

~=0 on~flandcr (lo)

where a represents the part of ~S not coincident with ~fl. It
is evident that, assuming IJ = O in 0 – S, any eigensolution
of (7) is also a solution of the enlarged problem (9), (10).
This last problem, however, also admits solutions related to
the problem similar to (7) but concerning O – S (or each one
of its separate subdomains, as in the case of Fig. 2). These
solutions will differ from zero only in Q – S (or in one of
its subdomains). No solution other than those pertaining to
the individual subdomains exists. Note that, in the degenerate
cases where the same value of K is an eigenvalue for two (or
more) subdomains of 0, eigensolutions differing from zero

in more than one subdomain may exist. Also in these cases,
however, the eigenfunctions can always be combined in such

a way as to differ from zero in one subdomain only, like
the nondegenerate ones. In conclusion, the solutions of the
enlarged problem can be grouped in two classes, “internal”
and “external” solutions, differing from zero only in S or in
O – S, respectively.

Note that all the eigenfunctions of the enlarged problem
are continuous in f?, differentiable to all orders in fl — O,
and with the normal derivative discontinuous through cr. The
eigenfunctions, which can be considered real, are orthogonal in
the Hilbert space Z2 (Q). Since each one of them differs from
zero in only one subdomain, normalizing in this subdomain is
equivalent to normalizing in fl. Therefore, in addition to (9),
(10) we assume

114410=1 (11)

where II . IIQ represents the norm of ,C2(fl). The only
solutions we are interested in are the internal ones; the

external solutions are useless for our purposes. In spite of
this, solving the enlarged problem rather than the original one
is advantageous due to the possibility of using the BI-RME
method, as described in the following subsections.

A. Transformation of the Enlarged Problem into an
Integro-Differential Linear Eigenvalue Equation

In the BI-RME method the differential eigenvalue problem
is transformed into an integro-differential one, involving new
eigenfunctions which are much smoother than the O’s. The
eigenfunctions of the enlarged problem are represented as the
sum of i) a function 4, continuous and with continuous normal
derivative at o-; ii) another function representing the quasi-
static potential produced in f) by an equivalent source density
f located on o

?J(P) = @(F) +
/

G(F, F) f(;) do (12)
u

where F’ and F represent generic positions in Q and o,
respectively, and G is the Green’s function satisfying

V2G(F, F’) = –d(F– F’) F, F’ G Q

G(F, F’) =0 Fe 80. (13)

Note that G is known in closed form (involving elliptic
functions of a complex variable, see [35], p. 1252) or in the
form of a rapidly converging image series (see Appendix A),
where the singularity of the Green’s function is represented
in closed form.

The boundary conditions (10) require

q$=O on~fl

(j(?) = – / G(s”, E’).f(t?) da V; ’ELT. (14)
a

Note that, due to the assumed continuity of 841%, (12)
implies that the discontinuity of the normal derivative of @
resides in the integral, so that, due to a well-known property
of the Green’s integral, this discontinuity coincides with f.
Then, the functional properties of f depend on the behavior



1060 IEEETRANSACTIONSON MICROWAVETHEORYAND TECHNIQUES, VOL. 4J, NO, 7, JULY 1996

of il#/i?n along the boundary; thus we can state that ~ is
continuous and differentiable to all orders along the smooth
part of o, and that the only singularities are possible at the
points 3’* where the direction of the tangent to a changes

abruptly by some angle a. Since the singularities are of the
order of I F — .F* I‘a/2x and Q < T (no knife-edge), we can
assume that f is square integrable in a.

Denoting by @ the function @ in the subdomain o and by
Lj the boundlar~ integral in (14), we see that ~ is related to
q$by the integral equation

Lf = –~. (15)

Note that the domain and the range of the operator L belong

to the Hilbert space Lz (o) because f is square-integrable and
4 is a continuous function.

The operator L is positive definite (remember that in elec-
trostatics Jr fLf do represents the energy of a surface charge

of density ~). Therefore (15) has a unique solution j for any
given ~

f = -L-lqj, (16)

Substituting in (12). we have

~(~) = #(F) -
/

G(F, F’) (L-l ~);do. (17)
u

For any # this formula generates a function @ that satisfies
the boundary conditions (10). It is stressed that this formula
permits an accurate representation of the discontinuity of
d@/i3n, provided that the singularity of G is expressed in

closed form, as we do.

Since the integral in (17) is harmonic in Q – CT,we have

V24 = v~ $ in fl-o. (18)

Therefore, substituting (18) and (17) in (9), we see that # must
bean eigenfunction of the integro-differential linear eigenvalue
equation

[/
v2g5+ti2 1#–

1
G(F, F) (L-l +); do = O. (19)—

.CT

Note that the term in parenthesis (that is @) is continuous
through cr. so that V2@ is continuous too. Therefore, i) (19)
holds in the whole domain L?; ii) its eigensolutions are much
more regular than those of (9), because their second derivatives
are continuous at o. Each eigensolution of L19J corresponds
to an eigensolution of (9) via (17).

Due to (9) and (18), the normalization (11) implies

1=
/

$2 do

= ~:~ / (V2V)2 (K)

Jn–c

=K-4 II V2q$ II: .

Therefore, + is normalized if we enforce

II Vz$i Ilfl= K2.

on q5the condition

(20)

B. Determination of L-l

The inverse of L is determined solving the integral ( 15) by
the Galerkin’s method. We consider a set of P basis functions
{UP(.?)} belonging to .Z2(o) and approximate f by

f = ~’b

where Ut = [U1, UZ, . . . . up] is the row-vector of the basis
functions (the superscript t denotes the transpose) and b E T3P
is a vector of unknown coefficients. The Galerkin’s method
converts (15,) into the matrix equation

Lb = –(U, ~).

where ( )~ denotes the inner product of .C2(a) and L is the
P x P matrix

L = (U, LL+)O. (21)

Then we have b = –L–l (u, ~). and, therefore

L-l$ = – ,f

=U’L-l(U, ~)m. (22)

The approximations involved in this equation affect the ac-
curacy of the boundary condition ~) = O on a. Theoreti-
cally, increasing the number of basis functions would make
the approximation as good as desired: in fact, the positive-
definiteness of L assures the convergence of the Galerkin’s
method [34]. Practically, a wise choice of the basis functions,
made in the light of the expected features of ~. permits to
achieve a very good accuracy with a limited number of basis
functions,

C. Determination of the Eigensolutions of (19)

Due to the smoothness of # and V2#, we represent these

functions by the uniformly convergent Fourier series

4 = ~ aP~+P~
P>q

P, q

where the apq are unknown coefficients and

(23)

(24)

Apq=/(:)2+(;)2p,,=,,,... (25)

It is noted that the functions Q PQ are related to the resonant

modes of the rectangular box of cross-section Q in the same

way as the eigensolutions of (7) are related to the resonant

modes of the short-circuited structure. Then the W~q and the

Apq represent the resonant modes of the rectangular box and

their resonant wavenumbers. For this reason. the coefficients

apq will be referred to as “mode amplitudes.” The expression
obtained by substituting the expansion of @ in (17), which
consists of a boundary integral and a resonant mode expansion,
is the “BI-RME representations” of +.

The functions ~ and V2g5 are approximated by retaining
the first Q modes only in the resonant mode expansions (23).
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Due to the smoothness of @, a reasonably small number of

the lowest-order modes should be sufficient for an accurate
representation of the first eigenfunctions of (19). Therefore
we use the apprc)ximations

+ = w’.

Vzd = – ~tA2a

where W and a are vectors including
and their amplitudes, respectively, and

(26)

the retained modes
A is the diagonal

matrix consisting of the corresponding wavenumbers. With
this approximaticm we also have [see (22)]

L-14 = – f

= utL–l Ra (27)

where R is the P x Q matrix

R = (U, ~t)o (28)

(also in this formula the underline indicates If? in the sub-
domain a). Due to the orthogonality of the modal fields we
have

(w, I@)n = I

where I denotes the Q x Q unit matrix. Moreover,
eigenfunction expansion (see [35, p. 821])

G(F; F’) = ~ Aj;VP@!UP@)

P, q

we deduce

(VP,,(F), G(F, F’))0 = A#PP,(F”).

from the

Therefore, introducing (26) and (27) into (19) and using the
Galerkin’s method (i.e., testing the l.h.s. by V), we obtain the
matrix eigenvalue equation

(A-2 - A-’’RtRA’2)(A2a)2a) = ~-2(A2a). (29)

Solving this equation we find Q eigenvalues {K1, . . . . /’iQ }

and eigenvectors {al, . . . . aQ }. It is expected that the small-
est eigenvalues (that correspond to the most slowly varying
eigenfunctions @)are the most accurate approximations for the
eigenvalues of (19); in fact (26) approximates C#Jby a band-
limited function,, so that the approximation is the better the
slower the variations of ~ in comparison with those of the
highest order modes included in If?. In other words, we expect
that the only significant eigensolutions (Ki, a~) of (29) are
those with K, “sufficiently small” in comparison with ~~~,

that is the maximum value AP~ included in A. For the same
reason eigensolutions with K, > ~~.. are meaningless, and
their calculation can be avoided. Assuming that (fit, at) is a

significant eigensolution of (29), the corresponding eigenfunc-
tion is ~, = Vt:ai, and its laplacian is – Vt A2a,. Therefore,
it is immediately verified that the normalizing condition (20)
requires the following normalization of the eigenvectors

a~A4a% = K: (30)

Due to (17) and (27) the ith normalized eigenfunction of the

enlarged problem (9) is given by

~,(~) = @(F)a, –
[1 1

G(F,.?)ut (F)da L-lRai. (31)
u

D. Selection of the Internal Modes and Calculation of c~i

Due to the approximation of the method, the internal (ex-
ternal) eigenfunctions cannot be exactly zero in the com-
plementary region. Anyway, each of them can usually be
assigned to either region by comparing its magnitude inside
and outside S. An exception is expected in cases where some
internal and external eigenfunctions are “quasi-degenerate”
(i.e., they have very closely spaced eigenvalues); in fact, due
to the approximate enforcement of the boundary condition
on o, a sort of “numerical coupling” between the internal
and external regions may occur, causing the quasi-degenerate
eigenfunctions to differ largely from zero in both regions.
In these cases, however, a suitable linear combination of the

coupled (or “garbled”) eigenfunctions—i .e., a suitable linear
transformation of the corresponding eigenvectors—permits us
to recover the decoupled ones, that are characterized by largely
different magnitudes in the externallinternal regions. It is
easily shown that, to preserve the normalization (30), the
transformation of the eigenvectors must be given by an unitary
matrix.

A reliable and easily automatizable procedure for comparing

the magnitudes of an eigenfunction in the internal and external
regions consists in comparing the norms

where the superscripts + and – denote the normal derivatives

calculated in the external and internal regions, respectively.
These derivatives, deduced from (31), are given by

8@*(7’)* = 811 V(F”)a, _ * U’(Y)

an ih [ 2

{

8G(3”, i) t
+

& 1
u (F) da L–lRa~.

u
(32)

The procedure for selecting the internal eigensolutions and for
resolving the garbled ones consists in the following steps:

1)

2)

3)

Calculation of h~ and h; for all the eigensolutions with
Ki < ~~= (as discussed before, all other eigensolutions
are meaningless);
Sequential testing of the eigensolutions, that are consid-
ered internal or external if h~ < ~h; or h; < ~h~,
where ~ denotes a small number, say 0.05.
If a garbled eigensolution @, is encountered, all subse-
quent garbled eigensolutions 43 with (KJ – K,)/K, < A
(A is a small number, say 0.02) are considered as
quasi-degenerate with ~,. Then each eigenvector aj is
combined with a~ in such a way as to minimize or
maximize h:. At the end of this process a% has been
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transformed in such a way as to maximize the unbalance

of the magnitudes of ~, in the internal/external region.

At this point tit is checked again, performing the test

described in the previous step.

4) The sequential test is resumed starting from @,+I.

The eigensolutions that do not pass the test of step 2 are

considered inaccurate. For the reasons discussed before, they

are like to occur in the range of eigenvalues nearest to ~~aX.

Increasing &.X (i.e., the number of the retained modes) and

the number P of the basis functions, the accuracy is increased,

and the range of inaccurate eigensolutions can be pushed well

above the maximum value of k in the band of interest.

Note that the external derivative (~~,/i3n)+ is nearly zero

for the internal solutions. Then, from (32) and (27) we obtain

= -ft.

This formula can be introduced in (8)

coefficients Cn~ pertaining to the ports

(33)

for calculating the

located on o. The

calculation of the same coefficients pertaining to ports located

on ~Q require the numerical evaluation of d~, Ian on the

ports. Since in this case the observation point F is outside o,

we have s~mply

[1(3G(F’, i) ‘ +

—

t?n 1
u (s) dcr L–l Ra,. (34)

u

IV. EFFECT OF A DEFORMATION OF o

A deformation of u causes a change of the frequency

response, due to the variation of the resonant wavenumbers

K, and of the eigenfunctions @i (i.e., of the coefficients c.,).

Evaluating the effect of a slight deformation is important both

for setting the mechanical tolerances and for including the

algorithm in a CAD tool performing the iterative optimization

of the response by subsequent deformations of o.

Let us suppose that a deformation transforms a smooth part

of a by displacing along the normal ii a generic point from

ii’ to a new position

where v is a small parameter and @(i) is a continuous

function, differing from zero in the perturbed region only.

Furthermore, let us assume to know ill resonant modes of the

unperturbed structure (i.e., Al eigensolutions of (29) related to

internal eigenfunctions) and that Al is large enough to permit

a good accuracy in the calculation of the series in (6). AS

discussed in Appendix B, the perturbed resonant wavenumbers

(Xl, . . . . kM) and the perturbed coefficients Z~I, . ~., ?nM are

given by

]=]
(37)

Fig. 3, The piece-wise parabolic sphnes used as basis functions

where

using (33) coefficients q,J are given by

(38)

(39)

(40)

(41)

(42)

where

x=
/

@uut do.
u

All the matrices in (4’2) are already known, apart from the
perturbation matrix X, whose calculation is straightforward.
Then the effect of a deformation can be evaluated with a
negligible computational effort. This possibility has actually
been exploited for optimization, following a strategy whose

description is beyond the scope of the present work.

V. IMPLEMENTATION AND TESTING OF THE ALGORITHM

The boundary u is approximated by one or more polygonal
and the number Q of the modes to be used in the resonant
mode expansion is fixed choosing ~~.. sufficiently larger than

the value of k at the upper limit of the operating band of the
waveguides. The sides of the polygonal longer than T /2A~aX

are subdivided into segments not exceeding this length.

We use as basis functions piecewise parabolic splines de-

fined over three adjacent segments or—at the extremes of

a—over two segments only (see Fig. 3). A denser segmen-

tation is used near the edges, in order to permit an acceptable

approximation of the rapid variations of ~. In the calculation

of the matrices L and R, we evaluate all integrals using

Gauss quadrature formulas, with the only exception of the

entries of L that involve overlapping basis functions. As usual

in the boundary element method, in the calculation of these

entries we evaluate the contribution from the singularity of

the Green’s function analytically, and the contribution from

its regular part numerically.

The eigenvalue problem (29) is solved using LAPACK

routines.

In the selection of the internal modes the norms h+ and

h– are calculated in a rather rough (but adequate) manner.
by considering the normal derivatives at the midpoint of each
segment of o and summing the products of their squares by
the length of the segments. The normal derivative of G is



CONCIAUROetal.: WIIDEBANDMODELING OF ARBITRARILY SHAPED H-PLANE WAVEGUIDECOMPONENTS 1063

db

L &- -

deg

-20
----- <= ~~
----- 3.75 8

5.5 + 1s111 ----------

-40 --- ,*”----’-, ‘*- ‘, #“;*.-.-.:’ 6
. ..’!, ,,’ ,’, ----- -. t ,’ /.--- .--, ‘, ~ ~,,,.

\./ , ,./
.h,~ ‘\ . 4

-60 .8 i ., !‘t.*, $ I -----
~--------------- 2

-t30 ------- - ---------------
------ -. _-_- _._e - -------- -------- -------- .-.

0

-1oo
A“+

8.5 !9 9.5 10 10.5 11 11.5 12GHz

Fig. 4. Effect of the parameter ( on the magnitudeofS11 and on the error in
the argument of S2 I for a section of WR-90 waveguide (length = 4 x width).
The CPU times were 3 s (< = 2.5), 7 s (( = 3.75) and 25 s (< = 5.5) on
a SUN SparcStation 10.
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Fig. 5. Geometry of the three-cavity filter. The dimensions (in
a = 19.05; d = 28.575; t = 2.0; r = 1.5; hl = 9.194; hz
LI = 13.617; L2 := 14.966.

mm) are:
= 5.858;

evaluated using the analytic expression of VG deduced from
the expression given in Appendix A. The apparent troubles

deriving from the numerical evaluation of the principal value
integral are absent, because t3G/8n is nonsingular when Z

tends to .7’ in the direction perpendicular to Z.
In the calculation of the coefficients Cni the integrals (8) are

evaluated numerically.
After the rescmant wavenumbers Kj and the coefficients

cm~ have been obtained, the values of the Y-parameters are
evaluated at many frequencies in the operating band of the

waveguides and the S-parameters are deduced from them.
It is noted that in cases of structures with one or two

symmetry planes the algorithm for the mode calculation can
be modified to take advantage of symmetry. This modification

is not discussed for brevity.
We tested the algorithm using as a benchmark a simple

WR-90 waveguide section, whose width is 22.86 mm. In this
waveguide the maximum value of k in the band of interest
(i.e., at 12.4 GHz) is k~a~ = 0.2597 mm-l. The length

of the section was 91.44 mm, i.e., four times the width. As
discussed in Section I, with such a length the errors deriving
from the approximation in (5) are immaterial, so that the test
can give information on the accuracy in the calculations of
the eigensolutions and, in particular, on the criterion for the
choice of the number of terms to retain in the resonant mode
expansion. In the. tests the dimensions of O were a = 99.06
mm and b = 34L.275 mm.

In the first test we placed the waveguide at the lower left
corner of 0 so that o consisted of two segments, the short
one coinciding with a port. The other port was located on WI.
The most critical results to be checked are the magnitude of
S1l (that should be theoretically zero) and the error A“ in the
argument of S21. The results of the calculations carried out

db I t ! 1 1 # I ns

o

-20-

-40-

-60-

-80 1 1 i i 1 r
10 11 12 13

Fig. 6. Calculated and measured response of the filter of Fig. 5. Experimental
data, courtesy of ESA-ESTEC (Noordwijk).

with three values of < = A~aJk~~ are reported in Fig. 4,
It is noted that the accuracy increases with increasing <, that
demonstrates the convergence of the algorithm. The accuracy
is acceptable right from values of ~ as low as 2.5. On the other
hand, the CPU time (see caption) increases rapidly with ~, so
that a good trade-off between accuracy and CPU time is to
choose < in the range 2.5 + 4.

In a further test the waveguide was centered in Q, thus

permitting to take advantage of the symmetry. This resulted in
a significant reduction of the CPU time, without any significant
variation in the accuracy.

VI. EXAMPLES

The examples to follow are intended to validate the algo-
rithm and to show how it cart be used in the design of complex
structures of practical interest, obtaining a very good accuracy
with a short computing time (the reported CPU times refer to
a SUN SparcStation 10).

The first example concerns the three-cavity filter in WR-75

waveguide, shown in Fig. 5. The measured and the calculated
response of the filter are reported in Fig. 6, showing the
practical coincidence between them. The experimental data
refer to a prototype machined to very close tolerances, In the

analysis each rounded corner was approximated by two small
segments and the double symmetry was exploited to minimize
the computing time. Using < = 4,5, the CPU time was only
10 s.

The second example concerns the analysis of the nine-

cavity filter shown in Fig. 7, designed using our method
in conjunction with an optimization routine. The unusual
“meander” shape of this filter was chosen for minimizing its

overall length, that is nearly the same as that of a conventional
five-resonator in-line filter. Other features of the filter are
discussed in [36]. The computed and measured insertion loss
of the filter are plotted in Fig. 8. The agreement is very good,
in consideration of the fact that the mechanical tolerances were
not as good as in the previous example. Using < = 3.5, the
CPU time was 235 s.

Finally we consider a six-port matched three-way power
divider we designed for the 19.7+ 20.2 GHz band (see Fig.
9). Ideally, the power entering from any waveguide should be
equally divided among the three opposite waveguides, the two
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Fig 8. Calculated and measured response of the filter of Fig. 7. Experimental
data, courtefy of Siemens TLC (Milano)
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Fig.9. Three-way matched power divider. Thepofls areonstandard WR-4?
waveguides.

port on the same side being decoupled. The complicated shape

of the central body of the divider resulted from optimization

and derived from the need of minimizing its size (the com-

ponent was designed for the dividinglrecombining network of

a spaceborne solid-state power amplifier). The computed and

experimental magnitude of some S-parameters are reported in

Fig. 10. The agreement is good, the small differences being

ascribed partly to mechanica~ inaccuracies, partly to measuring

errors due to the difficulty of connecting the divider to the
Network Analyzer. Using < = 3.5 the CPU time was 35 s.

VII. CONCLUSION

We described a method that permits the calculation of all
the quantities involved in a mathematical model of H-plane
components in the frequency domain. The efficiency of the
method depends on the possibility of determining the poles and
the residues of the Y-matrix by the solution of a linear matrix
eigenvalue problem involving matrices of reasonably small
order. The reported examples demonstrate that the wideband
modeling of complicate structures, such as multicavity filters
of unusual shape. can be carried out in times of the order of one

.40 ~
19,7 19.9 20,1 GHz

Fig. 10 Computed and measured magnitudes of some S-parameters of the
power dwider shown in Fig 9. Experimental data, courtesy of Slemens TLC
(Milano).

minute. using an ordinary workstation. Either for its rapidity

and for the possibility of a quick evaluation of the effect of a

deformation on the frequency response, the method is ideally
suited for use in a CAD code, together with an optimization
routine.

APPENDIX

A. Expression of G

G can be represented by the image series

G(z, I/> z’, y’) = –+ ~ (-I)m+rL h Rrm
m, n=—m

where

R mn = [(~ - %)2+ (y - ?Jn)’]’/’

and

~— ()m+ ; CL+ (–l)mL (z’– ;)

~~(~+i)’+(-’’
Summing over n we obtain

7,(Z – Xm) _ ~057r(7J+ y’)
cosh

G= ~ ~ln b b
7r(z – Zm)m.—m cosh

7r(y – y’)

b
– Cos

b“

This series converges exponentially. The singularity of the
Green’s function resides in the term with m = O. If b > a the
series summed over m converges more rapidly. This series is
obtained by interchanging x with y and a with b.

B. Perturbation Formulas

The perturbation theory reported in [35, pp. 1060-1062]
involves the quantities
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where ~i, and ~oi are (unperturbed) eigenfunction of (7) and

G, h, and ~ are the perturbed counterparts of ~, n, and S.
Due to the othonormality of the unperturbed eigenfunctions
and to the Dirichlet boundary condition we have Nij z fiij, to
second order in v. Moreover, using (7), and writing the first

Green’s identity for the small region S – S, we obtain

Therefore, observing that in S – S the normal component of
the gradients is nearly constant (within an error of the order
of V2) and that the tangent component is of the order of v we

have V+, . VtjJ x (d~,/8n)(8~j/8n). In conclusion, due
to (33) and (35) we can write

where q,~ is given by (38). Introducing these expressions in
the perturbation formulas (9.2.70) and (9.2.7 1) reported in [35]
we obtain (36) and, for the perturbed eigenfunctions

(Al)

where ai~ is defined by (39), (40) and Qi is a normalization
factor (not considered in [35]). Due to the first Green’s
identity, the gradients of the eigenfunctions of (7) satisfy

Accordingly, Qt must be determined in such away as to have

Observing that

-J V’f)i .

s–s
VIJ3 dS

=2 Ki /i%j — u q%j

we obtain (41). Finally, considering (8), from (A 1) we obtain
(37).
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