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Abstract— The paper describes a very fast and flexible algo-
rithm for the wideband modeling of arbitrarily shaped H-plane
waveguide components. The algorithm is based on the evaluation
of the poles and the residues of the Y -parameters by the “bound-
ary integral—resonant mode expansion method.” It also permits
the fast evaluation of the effect of a deformation on the frequency
response, a feature very useful either for optimization or for
setting the mechanical tolerances. Some examples demonstrate
the efficiency, flexibility, and reliability of the method. They show
that the frequency response of complicated structures, such as
multicavity filters, can be calculated in times of the order of one
minute (or less) on ordinary workstations.

I. INTRODUCTION

HE ever-increasing interest in numerical modeling of

waveguide components is demonstrated by the huge
number of articles and conference papers devoted to this
subject in recent years. Some very efficient methods are based
on the segmentation of the structure to be analyzed into
building blocks represented by generalized circuit matrices
or by multimode equivalent circuits [1]-[12]. Anyway, the
nature of the analytical/numerical techniques used to model
the building blocks (e.g., the mode matching technique) limits
the applicability of these methods to structures that can be
segmented into elements of very simple shapes. Another
approach is based on the field-theoretical analysis of the whole
component by general methods, such as the FEM [13], the
BEM [14], the FDTD method [15] and the BCMM method
[16]. In this approach any limitation on the shape of analyzable
components is removed radically, but the resulting algorithms
are normally less efficient than the specialized ones, based on
the segmentation.

In recent years we developed a field-theoretical method
that conjungates the rapidity of specialized methods with the
flexibility of general ones. This method is particularly well
suited for wideband calculations of irregular responses, due
to its nice feature of yielding in a single step the mathe-
matical model of a waveguide component in the form of a
pole expansion in the frequency domain. In fact, after the
model has been identified, the frequency response can be
obtained straightforwardly throughout the band of interest, thus
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avoiding the repeated field calculations that, in other methods,
are carried out at many frequency (or time) points. Another
relevant feature of our method is the possibility of evaluating
very simply the perturbations of the frequency response due
to small deformations of the component. This possibility is
useful for optimization or for setting machining tolerances.

The method is founded on two cornerstones: i) an ap-
proximate—but very accurate—wideband representation of
the Y -parameters in the form of a rapidly converging pole
expansion; ii) a fast, flexible and reliable algorithm for the
calculation of the poles and the residues. This calculation
requires the determination of a number of modes of a cavity
resonator, i.e., the solution of an electromagnetic eigenvalue
problem. The approach to the solution of this problem is based
on the same philosophy originally introduced in [17] for the
calculation of the modes of hollow conducting waveguides
and, more recently, followed in [18], [19] to solve other
electromagnetic eigenvalue problems. It is characterized by the
use of a hybrid field representation consisting of quasi-static
boundary integrals and a rapidly converging resonant mode
expansion. For this reason this approach has been recently
named “boundary integral-—resonant mode expansion (BI-
RME) method” [19].

A preliminary paper concerning H-plane structures appeared
on a journal of limited circulation [20]. Subsequently, the
method has been extended to E-plane and three-dimensional
(3-D) structures and, in conjunction with an optimization
algorithm, it has been used for the design of components of
industrial interest. Short descriptions of these extensions and
applications are scattered in a number of conference papers
[211-{27]. Though the details of the theoretical aspects of
the method have not yet been described in the literature, the
algorithm has already been implemented in a very efficient
computer code for the analysis of H- and E-plane waveguide
components [28]. The present paper is the first of a series
of articles we intend to publish to give a comprehensive
description of the BI-RME methodology in the analysis of
waveguide components. It is restricted to the H-plane case,
which is the simplest one.

II. WIDEBAND REPRESENTATION OF THE Y -MATRIX

Let us consider an arbitrary H-plane component of height
h (Fig. 1). The component is lossless and contains a homoge-
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neous, isotropic, nondispersive medium whose permittivities
are ¢, p. We have N terminal waveguides, whose widths (a,,)
and lengths (d,) satisty

dp > an, (n=1,2 -, N). (1)

The component is excited by TEjg-mode incident waves,
at a frequency w small enough for assuming that, in all
waveguides, the evanescent higher order modes generated at
the discontinuities are strongly attenuated in the distances d,,.
On account of (1) this assumption is acceptable if w does not
exceed some frequency wy.y, about 10% below the cutoff
frequency of the TEqp mode in the largest waveguide. Up to
the frequency wpyax the component can be described by the
admittance matrix Y = Y (w), that relates the TEjg-mode
currents and voltages at the ports Sy, Sz, -+, Sy.

From the theory of cavity resonators we know that the
elements of Y can be represented by the formula [29]

Amn ]]" CmCna
Yinn(w) = = — 55 2
(w) hn +5 Z pray: 2)

where m, n =1, 2, ---, N, n is the characteristic impedance
of the medium, k& = w,/ex is the wavenumber at the frequency
w and #;, is the resonating wavenumber of the +th mode of the
cavity obtained short-circuiting the ports; furthermore, A,,,
represents a series depending on the irrational eigenfunctions
of the cavity and the coefficients ¢,, are given by

Crp = /
S

where ‘H, is the magnetic vector of the ith resonant mode of
the cavity and k., is the magnetic vector of the TE;y mode of
the nth waveguide. Both ﬁL and }_{T, are normalized to 1 in
the cavity volume and in the cross-section S,,, respectively.

Equation (2) is of little practical utility due to the slow
convergence of both the modal series and the series represented
by A,.,. However, we can transform this equation into a more
useful one by the following procedure. We have

w— ,Amn jk szcn'l 2
Y (w) ¥=0 2o IR +O0k ). @
W)=+ (Z 7+ O >)

12

B - i dS, (3)

n

3

On the other hand, at low frequencies all waveguides are far
below cutoff, so that, provided they are sufficiently long, the
ports are practically decoupled and the input admittances are
pearly equal to the characteristic admittances Y, of the TE;q
mode. Then we can also write

w—0

Ymn(w) ~ bmn,yrn

T\ e
O

Jkn
1 womn Gk Tan 9
[5;—%ka)}émn

- omn

Tjky an o

where 6,,, is the Kronecker symbol. Comparing with (2) we
realize that

o,
Amn ~ mn

Un
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Fig. 1 A H-plane multiport waveguide component
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Then, extracting the last series from the series in (2) we obtain
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This equation is much more convenient than (2) due to the
improved convergence of the series (caused by the multiplica-
tion of its elements by the factor /{,‘2) and because it does not
require the knowledge of the irrational eigenfunctions involved
in the calculation of A,,,.

The systematic error introduced by the approximation (5)
decreases with increasing the lengths d,,. To have an idea of
its magnitude we considered a waveguide section of length 2d
and width a, a case where the exact expressions of the resonant
wavenumbers ~, and of the coefficients ¢,, can be easily
determined. Considering a very large number of resonant
modes (in order to exclude errors due to the truncation of
the series), we calculated the admittance parameters by (6) in
the useful band of the waveguide and deduced the return loss,
that should be theoretically infinite. We verified an exponential
increase, from 32 dB (in the case d = a) to 100 dB for
d = 2.5q. Therefore, under condition (1), the accuracy of (6)
is appropriate for most practical purposes.

Using (6) the wideband modeling of a H-plane component
is reduced to the problem of determining the first few resonant
modes of a cylindrical cavity. The only ¢,, coefficients that
differ from zero are those related to the r-independent TM-
to-z resonant modes. These modes depend on a 2-D scalar
potential ¢ defined in the cross-section S (Figs. 1 and 2) and
satisfying the eigenvalue equation

Vi 4+ rx%p =0 inS

=0 ondSs. (7)
Assuming the normalization [ 2 dS = 1, the normalized
magnetic field for the ith resonant mode is
- U xV
H, = ———=— i
v

where v, is the ith eigenfunction of (7) and x, is the corre-
sponding eigenvalue. Using the well-known expression of A,
(3) yields

2 “r o Op \
w:iﬂ—/ ﬁ%mﬂW@ (8)
Ky ¥V an Jo  Ong, U

where &, is a coordinate taken over the nth port and 8/0n,,
denotes the normal derivative at the same port.
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Fig. 2. The cross-section of the short-circuited structure of Fig. 1 embedded
in the rectangular dornain £2.

The determination of a sufficient number of eigenvalues of
(7) and of the normal derivatives of the corresponding eigen-
functions is all we need to obtain the admittance parameters
in the form (6).

III. DETERMINATION OF THE EIGENSOLUTIONS

The crucial point for setting up an efficient procedure for the
determination of the unknown quantities involved in (6) is the
choice of the method for finding—with no restriction on the
shape of S—a sufficient number of eigensolutions of (7) (in
most practical cases this number is of the order of many tens
and, sometimes, it can exceed one hundred). General methods,
such as the FEM [30], {31] and the BEM [32] are not adequate
for finding so large a number of eigensolutions. In fact the use
of the FEM would result in a very large mairix eigenvalue
problem, and the use of the BEM would require a huge
number of repeated calculations of the system matrix, to find
the eigenvalues as zeros of its determinant. Therefore, in our
application, both methods would result in very long computing
times and, in the case of the BEM, in the probable missing
of some eigensolutions, especially in regions of closely spaced
eigenvalues. The same disadvantages are present in a variant of
the BEM proposed in [33], where the usual free-space Green’s
function is replaced by the Green’s function of a fictitious
rectangular resonator 2 that includes the domain S (Fig. 2).

Also in our method we consider S as a subdomain of €.
We extend to €2 the domain of % and assume

V3 4+ k*p =0 inQ—o
=0 ondflando

&)
(10)

where ¢ represents the part of S not coincident with 9%2. It
is evident that, assuming ¢ = 0 in 2 — S, any eigensolution
of (7) is also a solution of the enlarged problem (9), (10).
This last problem, however, also admits solutions related to
the problem similar to (7) but concerning {2 — S (or each one
of its separate subdomains, as in the case of Fig. 2). These
solutions will differ from zero only in Q@ — S (or in one of
its subdomains). No solution other than those pertaining to
the individual subdomains exists. Note that, in the degenerate
cases where the same value of & is an eigenvalue for two (or
more) subdomains of 2, eigensolutions differing from zero
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in more than one subdomain may exist. Also in these cases,
however, the eigenfunctions can always be combined in such
a way as to differ from zero in one subdomain only, like
the nondegenerate ones. In conclusion, the solutions of the
enlarged problem can be grouped in two classes, “internal”
and “external” solutions, differing from zero only in S or in
2 — S, respectively.

Note that all the eigenfunctions of the enlarged problem
are continuous in {2, differentiable to all orders in  — o,
and with the normal derivative discontinuous through o. The
eigenfunctions, which can be considered real, are orthogonal in
the Hilbert space L£9(2). Since each one of them differs from
zero in only one subdomain, normalizing in this subdomain is
equivalent to normalizing in 2. Therefore, in addition to (9),
(10) we assume

llle =1 (1)

where || . |lo represents the norm of L(Q). The only
solutions we are interested in are the internal ones; the
external solutions are useless for our purposes. In spite of
this, solving the enlarged problem rather than the original one
is advantageous due to the possibility of using the BI-RME
method, as described in the following subsections.

A. Transformation of the Enlarged Problem into an
Integro-Differential Linear Eigenvalue Equation

In the BI-RME method the differential eigenvalue problem
is transformed into an integro-differential one, involving new
eigenfunctions which are much smoother than the ¢’s. The
eigenfunctions of the enlarged problem are represented as the
sum of: i) a function ¢, continuous and with continuous normal
derivative at o; ii) another function representing the quasi-
static potential produced in 2 by an equivalent source density
f located on ¢

WF) = B(F) + / G(F,7) £(7) do 12)

where 7 and § represent generic positions in Q and o,
respectively, and G is the Green’s function satisfying

VIG(F, 7= - §(F—7") 7 7 e
)

G(F, 7') =0 7ean. (13)

Note that G is known in closed form (involving elliptic
functions of a complex variable, see [35], p. 1252) or in the
form of a rapidly converging image series (see Appendix A),
where the singularity of the Green’s function is represented
in closed form.

The boundary conditions (10) require

¢ =0 ondQd
H(3') = —/ G(3',8)f(8)doe V& eo. (14)

Note that, due to the assumed continuity of J¢/dn, (12)
implies that the discontinuity of the normal derivative of
resides in the integral, so that, due to a well-known property
of the Green’s integral, this discontinuity coincides with f.
Then, the functional properties of f depend on the behavior



1060

of 9¢/On along the boundary; thus we can state that f is
continuous and differentiable to all orders along the smooth
part of o, and that the only singularities are possible at the
points s* where the direction of the tangent to o changes
abruptly by some angle «. Since the singularities are of the
order of | §— 5* |7°/?" and « < 7 (no knife-edge), we can
assume that f is square integrable in o.

Denoting by ¢ the function ¢ in the subdomain ¢ and by
L the boundary integral in (14), we see that f is related to
¢ by the integral equation

Lf=—¢.

(15

Note that the domain and the range of the operator L belong
to the Hilbert space L£o(o) because f is square-integrable and
¢ is a continuous function.
~ The operator L is positive definite (remember that in elec-
trostatics [ fLf do represents the energy of a surface charge
of density f). Therefore (15) has a unique solution f for any
given ¢

f=-L"9.

(16)

Substituting in (12). we have

(17

W) = 4(5) - [ G5 (L Gz
For any ¢ this formula generates a function ¢ that satisfies
the boundary conditions (10). It is stressed that this formula
permits an accurate representation of the discontinuity of
O/ On, provided that the singularity of G is expressed in
closed form, as we do.
Since the integral in (17) is harmonic in {2 — o, we have
V3 =V?¢ inQ—o. (18)
Therefore, substituting (18) and (17) in (9), we see that ¢ must
be an eigenfunction of the integro-differential linear eigenvalue
equation

Vi + 1? [qﬁ—— / G(#, §) (L' ¢)sdo| = 0. (19)

Note that the term in parenthesis (that is ¢/) is continuous
through o. so that VZ¢ is continuous too. Therefore, i) (19)
holds in the whole domain €2; ii) its eigensolutions are much
more regular than those of (9), because their second derivatives
are continuous at ¢. Each eigensolution of (19) corresponds
to an eigensolution of (9) via (17).

Due to (9) and (18), the normalization (11) implies

1:/01/;2019

=x"1 / (V24)? dQ
Q-0
=" VG
Therefore, 1) is normalized if we enforce on ¢ the condition

| V3 |lo= x> (20)
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B. Determination of L™}

The inverse of L is determined solving the integral (15) by
the Galerkin’s method. We consider a set of P basis functions
{u, (&)} belonging to L2(o) and approximate f by

f=ub
where ut = [u1, Uz, -, up] is the row-vector of the basis
functions (the superscript ¢ denotes the transpose) and b € Rp

is a vector of unknown coefficients. The Galerkin’s method
converts (15) into the matrix equation

Lb = —{u, ¢),

where (), denotes the inner product of L9(o) and L is the
P x P matrix

L = (u, Lu'),. 2D
Then we have b = —L~!(u, ¢), and, therefore
L= —f
=u'L{u, ¢),. (22)

The approximations involved in this equation affect the ac-
curacy of the boundary condition v = 0 on o. Theoreti-
cally, increasing the number of basis functions would make
the approximation as good as desired; in fact, the positive-
definiteness of L assures the convergence of the Galerkin's
method [34]. Practically, a wise choice of the basis functions,
made in the light of the expected features of f, permits to
achieve a very good accuracy with a limited number of basis
functions.

C. Determination of the Eigensolutions of (19)

Due to the smoothness of ¢ and V?¢, we represent these
functions by the uniformly convergent Fourier series

¢ = Z pq ¥ pq
q

P
V2= apgrn,Tpg (23)
P, q
where the a,, are unknown coefficients and
2 T
Vg = ﬁ sin % sin % (24)
7\ 2 T\ 2
Apg = (%) +(%7) pg=1,2 . (25

It is noted that the functions ¥, are related to the resonant
modes of the rectangular box of cross-section {2 in the same
way as the eigensolutions of (7) are related to the resonant
modes of the short-circuited structure. Then the ¥,, and the
Apq represent the resonant modes of the rectangular box and
their resonant wavenumbers. For this reason. the coefficients
ape Will be referred to as “mode amplitudes.” The expression
obtained by substituting the expansion of ¢ in (17), which
consists of a boundary integral and a resonant mode expansion,
is the “BI-RME representations” of /.

The functions ¢ and V?¢ are approximated by retaining
the first ) modes only in the resonant mode expansions (23).
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Due to the smoothness of ¢, a reasonably small number of
the lowest-order modes should be sufficient for an accurate
representation of the first eigenfunctions of (19). Therefore
we use the approximations

¢ =W'a
V2p = — WiA%a (26)
where ¥ and a are vectors including the retained modes
and their amplitudes, respectively, and A is the diagonal
matrix consisting of the corresponding wavenumbers. With
this approximation we also have [see (22)]

Llg=—f
=u'L 'Ra Q7N
where R is the P x @ matrix
R=(u, ¥, (28)

(also in this formula the underline indicates ¥ in the sub-
domain o). Due to the orthogonality of the modal fields we
have

(‘Ilv \Ilt>ﬂ =1

where I denotes the Q x @ unit matrix. Moreover, from the
eigenfunction expansion (see [35, p. 821])

G(7, F/) = Z ’\;q2‘I’pq(F)\qu(Fl)
P, q

we deduce
(llqu'(F)? G(Fa 7—"/))9 = A;qzq’pq(F’)'

Therefore, introducing (26) and (27) into (19) and using the
Galerkin’s method (i.e., testing the Lh.s. by ¥), we obtain the
matrix eigenvalue equation

(A2 — AT?R'L'RAH)(A%a) = k3(A%a). (29
Solving this equation we find @ eigenvalues {k1, -, kQ}
and eigenvectors {ay, ---, ag}. It is expected that the small-

est eigenvalues (that correspond to the most slowly varying
eigenfunctions ¢) are the most accurate approximations for the
eigenvalues of (19); in fact (26) approximates ¢ by a band-
limited function, so that the approximation is the better the
slower the variations of ¢ in comparison with those of the
highest order modes included in ¥. In other words, we expect
that the only significant eigensolutions (x;, a;) of (29) are
those with &, “sufficiently small” in comparison with Amax,
that is the maximum value ), included in A. For the same
reason eigensolutions with k, > Apnax are meaningless, and
their calculation can be avoided. Assuming that (r,, a,) is a
significant eigensolution of (29), the corresponding eigenfunc-
tion is ¢, = Wta,, and its laplacian is —W!A?a,. Therefore,
it is immediately verified that the normalizing condition (20)
requires the following normalization of the eigenvectors
alA‘a, =k} (30)

%
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Due to (17) and (27) the ith normalized eigenfunction of the
enlarged problem (9) is given by

() = BH(7)a, — [/ G(7,5) ut (§')do] L 'Ra;. (31)

D. Selection of the Internal Modes and Calculation of cy;

Due to the approximation of the method, the internal (ex-
ternal) eigenfunctions cannot be exactly zero in the com-
plementary region. Anyway, each of them can usually be
assigned to either region by comparing its magnitude inside
and outside S. An exception is expected in cases where some
internal and external eigenfunctions are “quasi-degenerate”
(i.e., they have very closely spaced eigenvalues); in fact, due
to the approximate enforcement of the boundary condition
on o, a sort of “numerical coupling” between the internal
and external regions may occur, causing the quasi-degenerate
eigenfunctions to differ largely from zero in both regions.
In these cases, however, a suitable linear combination of the
coupled (or “garbled”) eigenfunctions—i.e., a suitable linear
transformation of the corresponding eigenvectors—permits us
to recover the decoupled ones, that are characterized by largely
different magnitudes in the external/internal regions. It is
easily shown that, to preserve the normalization (30), the
transformation of the eigenvectors must be given by an unitary
matrix.

A reliable and easily automatizable procedure for comparing
the magnitudes of an eigenfunction in the internal and external
regions consists in comparing the norms

ot
| e

hi_'an -
- _ ||
w=|a |,

where the superscripts + and — denote the normal derivatives
calculated in the external and internal regions, respectively.
These derivatives, deduced from (31), are given by

(3" _ 0w [, ()
on T On ) 2
0G(3",8) 1t (5 -1
+fa 5 U (8)do| L™ "Ra;.

(32

The procedure for selecting the internal eigensolutions and for
resolving the garbled ones consists in the following steps:

1) Calculation of k) and h;" for all the eigensolutions with
Ki < Amax (as discussed before, all other eigensolutions
are meaningless);

2) Sequential testing of the eigensolutions, that are consid-
ered internal or external if A < yh] or b < yh},
where v denotes a small number, say 0.05.

3) If a garbled eigensolution 4, is encountered, all subse-
quent garbled eigensolutions v, with (k, — k,)/k, < A
(A is a small number, say 0.02) are considered as
quasi-degenerate with 4,. Then each eigenvector a; is
combined with a; in such a way as to minimize or
maximize hj At the end of this process a, has been
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transformed in such a way as to maximize the unbalance
of the magnitudes of 1, in the internal/external region.
At this point 1, is checked again, performing the test
described in the previous step.

4) The sequential test is resumed starting from 10,4 1.

The eigensolutions that do not pass the test of step 2 are
considered inaccurate. For the reasons discussed before, they
are like to occur in the range of eigenvalues nearest t0 Apyax-
Increasing Agax (i-e., the number of the retained modes) and
the number P of the basis functions, the accuracy is increased,
and the range of inaccurate eigensolutions can be pushed well
above the maximum value of &k in the band of interest.

Note that the external derivative (9v,/9n)" is nearly zero
for the internal solutions. Then, from (32) and (27) we obtain

oY, ”
an

~u'L"'Ra;
= —fz-

This formula can be introduced in (8) for calculating the
coefficients c,,, pertaining to the ports located on o. The
calculation of the same coefficients pertaining to ports located
on 9% require the numerical evaluation of Ji),/dn on the
ports. Since in this case the observation point 7 is outside o,

we have simply
Ot (7)

9(7) _
an on !

a - =
- U ﬁ-,(r’—s)uf (8)do| L™ 'Ra,. (34)
- on

(33)

IV. EFFECT OF A DEFORMATION OF o

A deformation of o causes a change of the frequency
response, due to the variation of the resonant wavenumbers
&, and of the eigenfunctions ; (i.e., of the coefficients ¢,,).
Evaluating the effect of a slight deformation is important both
for setting the mechanical tolerances and for including the
algorithm in a CAD tool performing the iterative optimization
of the response by subsequent deformations of o.

Let us suppose that a deformation transforms a smooth part
of ¢ by displacing along the normal % a generic point from
§ to a new position

F—von (35

where v is a small parameter and O(5) is a continuous
function, differing from zero in the perturbed region only.
Furthermore, let us assume to know M resonant modes of the
unperturbed structure (i.e., M eigensolutions of (29) related to
internal eigenfunctions) and that M is large enough to permit
a good accuracy in the calculation of the series in (6). As
discussed in Appendix B, the perturbed resonant wavenumbers

(F1, -+, Kar)and the perturbed coefficients ¢,1, « - -, Cnar are
given by
Fcf =~ nf +vq, (36)
M
G Q7PN ey (37)

J=1
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Fig. 3. The piece-wise parabolic splines used as basis functions.
where
Gy = / Of.f do (38)
a
K
Oy = Tl (39)
1y
Koy .
=V ——55" 40
ab] VI‘C](/:\:/;Z_H?) (Z#]) ( )
2 Xoplagpg
=Y ol - Pl 41
Q Z gV Z Fiphiyg S
J p-q
Using (33) coefficients g,, are given by
¢, = a'R'L7'XL 'Ra, (42)

where
X = / Ouul do.

All the matrices in (42) are already known, apart from the
perturbation matrix X, whose calculation is straightforward.
Then the effect of a deformation can be evaluated with a
negligible computational effort. This possibility has actually
been exploited for optimization, following a strategy whose
description is beyond the scope of the present work.

V. IMPLEMENTATION AND TESTING OF THE ALGORITHM

The boundary o is approximated by one or more polygonals
and the number () of the modes to be used in the resonant
mode expansion is fixed choosing An.x sufficiently larger than
the value of & at the upper limit of the operating band of the
waveguides. The sides of the polygonal longer than /2 ax
are subdivided into segments not exceeding this length.

We use as basis functions piecewise parabolic splines de-
fined over three adjacent segments or—at the extremes of
o—over two segments only (see Fig. 3). A denser segmen-
tation is used near the edges, in order to permit an acceptable
approximation of the rapid variations of f. In the calculation
of the matrices L and R, we evaluate all integrals using
Gauss quadrature formulag, with the only exception of the
entries of L that involve overlapping basis functions. As usual
in the boundary element method, in the calculation of these
entries we evaluate the contribution from the singularity of
the Green’s function analytically, and the contribution from
its regular part numerically.

The eigenvalue problem (29) is solved using LAPACK
routines.

In the selection of the internal modes the norms h* and
h~ are calculated in a rather rough (but adequate) manner,
by considering the normal derivatives at the midpoint of each
segment of o and summing the products of their squares by
the length of the segments. The normal derivative of ¢ is
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Fig. 4. Effect of the parameter ¢ on the magnitude of 511 and on the error in
the argument of S for a section of WR-90 waveguide (length = 4 x width).
The CPU times were 3 s (( = 2.5), 7 s (( = 3.75) and 25 s (( = 5.5) on
a SUN SparcStation 10.
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Fig. 5. Geometry of the three-cavity filter. The dimensions (in mm) are:
a = 19.05;d = 28.575; ¢t = 2.0; r = 1.5; h1 = 9.194; ha = 5.858;
Ly = 13.617; Lo = 14.966.

evaluated using the analytic expression of VG deduced from
the expression given in Appendix A. The apparent troubles
deriving from the numerical evaluation of the principal value
integral are absent, because 8G/On is nonsingular when §
tends to 8/ in the direction perpendicular to 7.

In the calculation of the coefficients c,,; the integrals (8) are
evaluated numerically.

After the resonant wavenumbers k; and the coefficients
cn: have been obtained, the values of the Y -parameters are
evaluated at many frequencies in the operating band of the
waveguides and the S-parameters are deduced from them.

It is noted that in cases of structures with one or two
symmetry planes the algorithm for the mode calculation can
be modified to take advantage of symmetry. This modification
is not discussed for brevity.

We tested the algorithm using as a benchmark a simple
WR-90 waveguide section, whose width is 22.86 mm. In this
waveguide the maximum value of k£ in the band of interest
(ie., at 124 GHz) is kmax = 0.2597 mm~'. The length
of the section was 91.44 mm, i.c., four times the width. As
discussed in Section I, with such a length the errors deriving
from the approximation in (5) are immaterial, so that the test
can give information on the accuracy in the calculations of
the eigensolutions and, in particular, on the criterion for the
choice of the number of terms to retain in the resonant mode
expansion. In the tests the dimensions of {2 were a = 99.06
mm and b = 34.275 mm.

In the first test we placed the waveguide at the lower left
corner of ) so that o consisted of two segments, the short
one coinciding with a port. The other port was located on 9.
The most critical results to be checked are the magnitude of
S11 (that should be theoretically zero) and the error A° in the
argument of Sy;. The results of the calculations carried out
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Fig. 6. Calculated and measured response of the filter of Fig. 5. Experimental
data, courtesy of ESA-ESTEC (Noordwijk).

with three values of ¢ = Amax/kmax are reported in Fig. 4.
It is noted that the accuracy increases with increasing ¢, that
demonstrates the convergence of the algorithm. The accuracy
is acceptable right from values of ¢ as low as 2.5. On the other
hand, the CPU time (see caption) increases rapidly with ¢, so
that a good trade-off between accuracy and CPU time is to
choose ( in the range 2.5 + 4.

In a further test the waveguide was centered in €, thus
permitting to take advantage of the symmetry. This resulted in
a significant reduction of the CPU time, without any significant
variation in the accuracy.

VI. EXAMPLES

The examples to follow are intended to validate the algo-
rithm and to show how it can be used in the design of complex
structures of practical interest, obtaining a very good accuracy
with a short computing time (the reported CPU times refer to
a SUN SparcStation 10).

The first example concerns the three-cavity filter in WR-75
waveguide, shown in Fig. 5. The measured and the calculated
response of the filter are reported in Fig. 6, showing the
practical coincidence between them. The experimental data
refer to a prototype machined to very close tolerances. In the
analysis each rounded corner was approximated by two small
segments and the double symmetry was exploited to minimize
the computing time. Using ¢ = 4.5, the CPU time was only
10 s.

The second example concerns the analysis of the nine-
cavity filter shown in Fig. 7, designed using our method
in conjunction with an optimization routine. The unusual
“meander” shape of this filter was chosen for minimizing its
overall length, that is nearly the same as that of a conventional
five-resonator in-line filter. Other features of the filter are
discussed in [36]. The computed and measured insertion loss
of the filter are plotted in Fig. 8. The agreement is very good,
in consideration of the fact that the mechanical tolerances wete
not as good as in the previous example. Using ¢ = 3.5, the
CPU time was 235 s.

Finally we consider a six-port matched three-way power
divider we designed for the 19.7 <+ 20.2 GHz band (see Fig.
9). Ideally, the power entering from any waveguide should be
equally divided among the three opposite waveguides, the two
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Fig 8. Calculated and measured response of the filter of F1g. 7. Experimental
data, courtesy of Siemens TLC (Milano)
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Fig. 9. Three-way matched power divider. The ports are on standard WR-42
waveguides.

port on the same side being decoupled. The complicated shape
of the central body of the divider resulted from optimization
and derived from the need of minimizing its size (the com-
ponent was designed for the dividing/recombining network of
a spaceborne solid-state power amplifier). The computed and
experimental magnitude of some S-parameters are reported in
Fig. 10. The agreement is good, the small differences being
ascribed partly to mechanical inaccuracies, partly to measuring
errors due to the difficulty of connecting the divider to the
Network Analyzer. Using ¢ = 3.5 the CPU time was 35 s.

VII. CONCLUSION

We described a method that permits the calculation of all
the quantities involved in a mathematical model of H-plane
components in the frequency domain. The efficiency of the
method depends on the possibility of determining the poles and
the residues of the Y -matrix by the solution of a linear matrix
eigenvalue problem involving matrices of reasonably small
order. The reported examples demonstrate that the wideband
modeling of complicate structures, such as multicavity filters
of unusual shape, can be carried out in times of the order of one
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Fig. 10 Computed and measured magnitudes of some S-parameters of the
power divider shown in Fig 9. Experimental data, courtesy of Siemens TLC
(Milano).

minute. using an ordinary workstation. Either for its rapidity
and for the possibility of a quick evaluation of the effect of a
deformation on the frequency response, the method is ideally
suited for use in a CAD code, together with an optimization
routine.

APPENDIX

A. Expression of G

G can be represented by the image series

Glay o y) = —5 S ) Ry
m, n=-—co
where
R = (2 = 2m)* + (y —ya)*]/
and

Ly = (m + %) a+{(—=1)" (;17/ — %)

yn=<n+%>b+(—l)" (y’—%).

Summing over n we obtain

. /

i (—1)™ cosh m( bxm) — cos W(y:y)

d= In y
meTe AT cosh &= am) cos my b_ Y )

This series converges exponentially. The singularity of the
Green’s function resides in the term with m = 0. If 6 > a the
series summed over m converges more rapidly. This series is
obtained by interchanging x with ¢ and a with b.

B. Perturbation Formulas

The perturbation theory reported in [35, pp. 1060-1062]
involves the quantities

0, i
A”:[ %1#7(10

NL]:/~1/}1,'¢’] dg
s
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where ;, and 4; are (unperturbed) eigenfunction of (7) and
&, 71, and S are the perturbed counterparts of o, n, and S.
Due to the othonormality of the unperturbed eigenfunctions
and to the Dirichlet boundary condition we have N;; = §;;, to
second order in . Moreover, using (7), and writing the first
Green’s identity for the small region S — S, we obtain

Al

- / Vb, - Vip; dS + K2 (6,, — Nij)
Js-§

Q

- / Vi, - Vi, dS.
Js-§

Therefore, observing that in S — S the normal component of
the gradients is nearly corstant (within an error of the order
of »?) and that the tangent component is of the order of v we
have Vi), - Vi, ~ (0v,/0n)(0v;/0n). In conclusion, due
to (33) and (35) we can write

Ni] %(Sij

Azj N —-v qiy

where ¢,, is given by (38). Introducing these expressions in-

the perturbation formulas (9.2.70) and (9.2.71) reported in [35]
we obtain (36) and, for the perturbed eigenfunctions

(A1)

Kj

V&i —~ -3 v"/}j
i; ~Q; ZJ:O‘U

where o, is defined by (39), (40) and Q; is a normalization
factor (not considered in [35]). Due to the first Green’s
identity, the gradients of the eigenfunctions of (7) satisfy

/%.Y}ﬁds_(g.
= 6,5.
5

Ko Ky
Accordingly, ); must be determined in such away as to have
1 N ..
-5 [ Vi - VipdS = 1.
k2 Js

Observing that

[§V¢i - Vy;dS = /S Vi - Vi dS

- Vapi - Vb, dS
5-8

2
=K; bj — Vg

we obtain (41). Finally, considering (8), from (A1) we obtain
37).
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